P2Y2 nucleotide receptor activation enhances the aggregation and self-organization of dispersed salivary epithelial cells.
نویسندگان
چکیده
Hyposalivation resulting from salivary gland dysfunction leads to poor oral health and greatly reduces the quality of life of patients. Current treatments for hyposalivation are limited. However, regenerative medicine to replace dysfunctional salivary glands represents a revolutionary approach. The ability of dispersed salivary epithelial cells or salivary gland-derived progenitor cells to self-organize into acinar-like spheres or branching structures that mimic the native tissue holds promise for cell-based reconstitution of a functional salivary gland. However, the mechanisms involved in salivary epithelial cell aggregation and tissue reconstitution are not fully understood. This study investigated the role of the P2Y2 nucleotide receptor (P2Y2R), a G protein-coupled receptor that is upregulated following salivary gland damage and disease, in salivary gland reconstitution. In vitro results with the rat parotid acinar Par-C10 cell line indicate that P2Y2R activation with the selective agonist UTP enhances the self-organization of dispersed salivary epithelial cells into acinar-like spheres. Other results indicate that the P2Y2R-mediated response is dependent on epidermal growth factor receptor activation via the metalloproteases ADAM10/ADAM17 or the α5β1 integrin/Cdc42 signaling pathway, which leads to activation of the MAPKs JNK and ERK1/2. Ex vivo data using primary submandibular gland cells from wild-type and P2Y2R(-/-) mice confirmed that UTP-induced migratory responses required for acinar cell self-organization are mediated by the P2Y2R. Overall, this study suggests that the P2Y2R is a promising target for salivary gland reconstitution and identifies the involvement of two novel components of the P2Y2R signaling cascade in salivary epithelial cells, the α5β1 integrin and the Rho GTPase Cdc42.
منابع مشابه
P2Y receptors mediate Ca signaling in duodenocytes and contribute to duodenal mucosal bicarbonate secretion
Dong X, Smoll EJ, Ko KH, Lee J, Chow JY, Kim HD, Insel PA, Dong H. P2Y receptors mediate Ca signaling in duodenocytes and contribute to duodenal mucosal bicarbonate secretion. Am J Physiol Gastrointest Liver Physiol 296: G424–G432, 2009. First published December 12, 2008; doi:10.1152/ajpgi.90314.2008.—Since little is known about the role of P2Y receptors (purinoceptors) in duodenal mucosal bica...
متن کاملSalivary gland P2 nucleotide receptors.
The effects of ATP on salivary glands have been recognized since 1982. Functional and pharmacological studies of the P2 nucleotide receptors that mediate the effects of ATP and other extracellular nucleotides have been supported by the cloning of receptor cDNAs, by the expression of the receptor proteins, and by the identification in salivary gland cells of multiple P2 receptor subtypes. Curren...
متن کاملFunctional P2Y2 nucleotide receptors mediate uridine 5'-triphosphate-induced intimal hyperplasia in collared rabbit carotid arteries.
BACKGROUND Extracellular uridine 5'-triphosphate (UTP) induces mitogenic activation of smooth muscle cells (SMCs) through binding to P2Y2 nucleotide receptors. P2Y2 receptor mRNA is upregulated in intimal lesions of rat aorta, but it is unclear how this G-protein-coupled receptor contributes to development of intimal hyperplasia. METHODS AND RESULTS This study used a silicone collar placed ar...
متن کاملP2Y2 Receptor and EGFR Cooperate to Promote Prostate Cancer Cell Invasion via ERK1/2 Pathway
As one member of G protein-coupled P2Y receptors, P2Y2 receptor can be equally activated by extracellular ATP and UTP. Our previous studies have proved that activation of P2Y2 receptor by extracellular ATP could promote prostate cancer cell invasion and metastasis in vitro and in vivo via regulating the expressions of some epithelial-mesenchymal transition/invasion-related genes (including IL-8...
متن کاملRegulation by retinoids of P2Y2 nucleotide receptor mRNA in human uterine cervical cells.
Extracellular ATP stimulates acute changes in paracellular permeability across cultures of human uterine cervical epithelial cells [G. I. Gorodeski, D. E. Peterson, B. J. De Santis, and U. Hopfer. Am. J. Physiol. 270 ( Cell Physiol. 39): C1715-C1725, 1996]. In this paper, we characterize mRNA for a P2Y2 nucleotide receptor in human cervical cells. Using oligonucleotide primers based on the sequ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 307 1 شماره
صفحات -
تاریخ انتشار 2014